Drop impact on hairy surfaces
نویسندگان
چکیده
منابع مشابه
Drop impact on superheated surfaces.
At the impact of a liquid droplet on a smooth surface heated above the liquid's boiling point, the droplet either immediately boils when it contacts the surface ("contact boiling"), or without any surface contact forms a Leidenfrost vapor layer towards the hot surface and bounces back ("gentle film boiling"), or both forms the Leidenfrost layer and ejects tiny droplets upward ("spraying film bo...
متن کاملNon-isolated drop impact on surfaces
Upon impact on a solid surface, a drop expands into a sheet, a corona, which can rebound, stick or splash and fragment into secondary droplets. Previously, focus has been placed on impacts of single drops on surfaces to understand their splash, rebound or spreading. This is important for spraying, printing, and environmental and health processes such as contamination by pathogen-bearing droplet...
متن کاملAnisotropic drop morphologies on corrugated surfaces.
The spreading of liquid drops on surfaces corrugated with micrometer-scale parallel grooves is studied both experimentally and numerically. Because of the surface patterning, the typical final drop shape is no longer spherical. The elongation direction can be either parallel or perpendicular to the direction of the grooves, depending on the initial drop conditions. We interpret this result as a...
متن کاملDrop dynamics on chemically patterned surfaces
– We compare numerical and experimental results exploring the behaviour of liquid drops moving across a surface patterned with hydrophobic and hydrophilic stripes. A lattice Boltzmann algorithm is used to solve the hydrodynamic equations of motion of the drops allowing us to investigate their behaviour as the stripe widths and the wettability contrast are altered. We explain how the motion of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Fluids
سال: 2019
ISSN: 2469-990X
DOI: 10.1103/physrevfluids.4.064004